

General Certificate of Education Advanced Subsidiary Examination January 2010

Mathematics

MFP1

Unit Further Pure 1

Wednesday 13 January 2010 1.30 pm to 3.00 pm

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables
- an insert for use in Question 6 (enclosed).

You may use a graphics calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The **Examining Body** for this paper is AQA. The **Paper Reference** is MFP1.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.
- Fill in the boxes at the top of the insert.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

P22602/Jan10/MFP1 6/6/6/

Answer all questions.

1 The quadratic equation

$$3x^2 - 6x + 1 = 0$$

has roots α and β .

(a) Write down the values of $\alpha + \beta$ and $\alpha\beta$.

(2 marks)

(b) Show that $\alpha^3 + \beta^3 = 6$.

(3 marks)

(c) Find a quadratic equation, with integer coefficients, which has roots $\frac{\alpha^2}{\beta}$ and $\frac{\beta^2}{\alpha}$.

(4 marks)

2 The complex number z is defined by

$$z = 1 + i$$

(a) Find the value of z^2 , giving your answer in its simplest form.

(2 marks)

(b) Hence show that $z^8 = 16$.

(2 marks)

(c) Show that $(z^*)^2 = -z^2$.

(2 marks)

3 Find the general solution of the equation

$$\sin\left(4x + \frac{\pi}{4}\right) = 1$$

(4 marks)

4 It is given that

$$\mathbf{A} = \begin{bmatrix} 1 & 4 \\ 3 & 1 \end{bmatrix}$$

and that I is the 2×2 identity matrix.

- (a) Show that $(\mathbf{A} \mathbf{I})^2 = k\mathbf{I}$ for some integer k. (3 marks)
- (b) Given further that

$$\mathbf{B} = \begin{bmatrix} 1 & 3 \\ p & 1 \end{bmatrix}$$

find the integer p such that

$$(\mathbf{A} - \mathbf{B})^2 = (\mathbf{A} - \mathbf{I})^2 \tag{4 marks}$$

- 5 (a) Explain why $\int_{0}^{\frac{1}{16}} x^{-\frac{1}{2}} dx$ is an improper integral. (1 mark)
 - (b) For each of the following improper integrals, find the value of the integral **or** explain briefly why it does not have a value:

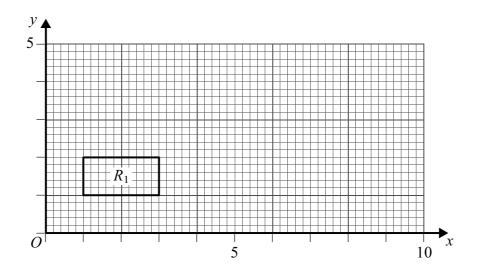
(i)
$$\int_0^{\frac{1}{16}} x^{-\frac{1}{2}} dx$$
; (3 marks)

(ii)
$$\int_{0}^{\frac{1}{16}} x^{-\frac{5}{4}} dx$$
. (3 marks)

Turn over for the next question

6 [Figure 1, printed on the insert, is provided for use in this question.]

The diagram shows a rectangle R_1 .



- (a) The rectangle R_1 is mapped onto a second rectangle, R_2 , by a transformation with matrix $\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$.
 - (i) Calculate the coordinates of the vertices of the rectangle R_2 . (2 marks)
 - (ii) On **Figure 1**, draw the rectangle R_2 . (1 mark)
- (b) The rectangle R_2 is rotated through 90° clockwise about the origin to give a third rectangle, R_3 .
 - (i) On **Figure 1**, draw the rectangle R_3 . (2 marks)
 - (ii) Write down the matrix of the rotation which maps R_2 onto R_3 . (1 mark)
- (c) Find the matrix of the transformation which maps R_1 onto R_3 . (2 marks)

- 7 A curve C has equation $y = \frac{1}{(x-2)^2}$.
 - (a) (i) Write down the equations of the asymptotes of the curve C. (2 marks)
 - (ii) Sketch the curve C. (2 marks)
 - (b) The line y = x 3 intersects the curve C at a point which has x-coordinate α .
 - (i) Show that α lies within the interval 3 < x < 4. (2 marks)
 - (ii) Starting from the interval 3 < x < 4, use interval bisection twice to obtain an interval of width 0.25 within which α must lie. (3 marks)
- 8 (a) Show that

$$\sum_{r=1}^{n} r^3 + \sum_{r=1}^{n} r$$

can be expressed in the form

$$kn(n+1)(an^2 + bn + c)$$

where k is a rational number and a, b and c are integers.

(4 marks)

(b) Show that there is exactly one positive integer n for which

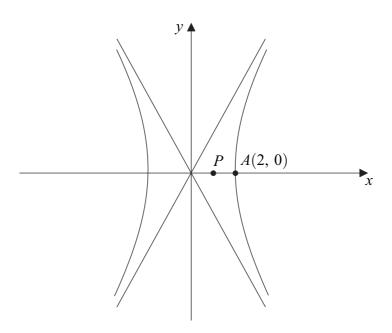
$$\sum_{r=1}^{n} r^3 + \sum_{r=1}^{n} r = 8 \sum_{r=1}^{n} r^2$$
 (5 marks)

Turn over for the next question

9 The diagram shows the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

and its asymptotes.



The constants a and b are positive integers.

The point A on the hyperbola has coordinates (2, 0).

The equations of the asymptotes are y = 2x and y = -2x.

- (a) Show that a = 2 and b = 4. (4 marks)
- (b) The point P has coordinates (1, 0). A straight line passes through P and has gradient m. Show that, if this line intersects the hyperbola, the x-coordinates of the points of intersection satisfy the equation

$$(m2 - 4)x2 - 2m2x + (m2 + 16) = 0$$
 (4 marks)

- (c) Show that this equation has equal roots if $3m^2 = 16$. (3 marks)
- (d) There are two tangents to the hyperbola which pass through *P*. Find the coordinates of the points at which these tangents touch the hyperbola.

(No credit will be given for solutions based on differentiation.) (5 marks)

END OF QUESTIONS

www.ms.mathscloud.com

There are no questions printed on this page

There are no questions printed on this page